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RADIATIVE ELECTRON POLARIZATION: THEORETICAL PREDICTIONS 
AND EXPLANATION OF THE SPEAR DATA 

S.R. Mane 

Fermilab, P.O. Box 500, Batavia, IL 60510 

I make various theoretical predictions, which should be testable experimentally, 
for the behavior of the polarization of an electron or positron beam circulating in a 
high energy storage ring. In particular, I treat the effects of synchrotron sidebands, 
including tune modulation and chromaticity. I also offer a theoretical explanation of 
experimental data taken at SPEAR, and am able to resolve various puzzling features 
of the data, which have remained unexplained up to now. 

1 



1 Introduction 

It is known that beams of electrons and positrons circulating in high energy stor- 
age rmgs become spontaneously polarized by the emission of synchrotron radiation; 
this is now known as the Sokolov-Ternov effect [l]. A theoretical formula for the 
equilibrium degree of polarization, applicable to realistic accelerator models, and for 
arbitrary spin resonances, was given by Derbenev and Kondratenko [Z], but they did 
not give an algorithm to actually evaluate the formal functions in their formula. I 
developed such an algorithm, within the framework of perturbation theory, treat- 
ing only linear orbital dynamics, in Ref. [3], and wrote a computer program called 
SMILE to implement it. Experimental measurements of the polarization as a func- 
tion of various accelerator parameters, in particular the beam energy, had previously 
been made at SPEAR [4], and they found several depolarizing resonances, including 
higher order ones. Theoretical formalisms to calculate the polarization at that time, 
however, could only fit, one of the first order resonances they saw [4], and not the 
other resonances, and so the experimenters only published a guide to the eye through 
their data. 

In this report, I make various theoretical predictions for the behavior of the po- 
larization, which should be directly testable experimentally. In addition, I offer an 
explanation of the SPEAR polarization data [4]. Although my formalism can cal- 
culate higher order resonances, I did not publish a fit to the SPEAR data in Ref. 
i31. Partly this was because the program was not really ready, it was not able to 
handle the full range of magnets required, and I did not have a copy of the SPEAR 
lattice. Program development has continued, however, and recently I obtained a copy 
of the SPEAR lattice, and was able to fit the data using SMILE. I present rn~ results 
below. Because of the calculations, I am able to resolve various puzzling features in 
the data, which have remained unexplained up to now, and to show that the data 
contain evidence for more resonances than the guide to the eye in Ref. [4] indicates. 
In this context, one must realize that the experimenters only identified resonances for 
which there was unambiguous evidence in the data. They did not claim that these 
were the only resonances. 

The fit to the data was written up in a letter to the experimenters [5], and presented 
at a recent conference 161. I have decided that the simplest way to write this report is 
just to reproduce the condents of the letter in an Appendix, with appropriate citations 
and footnotes. First, however, I describe the theoretical predictions for the behavior 
of the polarization. 
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Theoretical Predictions 

In this part of the report several theoretical predictions are listed, which should 
be directly testable experimentally. Th e use of the Compton backscattering laser 
method in Ref. [4] demonstrated clearly the ability of this technique to measure 
the polarization to the required degree of accuracy, in addition to showing that the 
resonances were isolated and clearly discernible in a machine like SPEAR. 

2 Technical Details 

2.1 First order resonances 

The iL axis of the Derbenev-Kondratenko formula [z] is a solution of the Thomas-BMT 
equation for spin motion diLldO = R x +I, where 0 is the ring azimuth and 6 is the spin 
precession vector in dimensionless units. I decompose 6 = fro + (3, where s?o is due 
to motion on the closed orbit and 5 is due to betatron and synchrotron oscillations. 
The full technical details can be found in many references, e.g. [7] and 181. It is 
not necessary to repeat them here. To calculate fi, I use a basis of three orthonormal 
vect,ors {i,, ho, &}, which are the solutions of the Thomas-BMT equation ds’= 6, x r 
on the closed orbit. The rector iL o, usually vertical, is the value of C on the closed . ^ 
orbit. Kext I define Ice = lO + ir& and write 

?I = &-Go + Re(Cii) (1) 

The fundamental point is that if one can solve for ( then one knows iL. Note that ( 
is complex. I find it useful to employ a complex exponential notation. I shall refer 
only to ( below. 

The equation of motion for [ is [7,8] 

4 
Z’ 

-iG.,&&@ + G.&C. 

I decompose 3 into a linear combination of normal modes 

(2) 

3= I?- WA + C.C. (3) 
X=l 

where X = z,y, z, say, in an uncoupled machine (A E horizontal betatron, vertical 

betatron, and synchrotron modes). Then IGxl o( I:“, where Ix is the appropriate 
orbital action. The first-order solution for [ (in powers of the orbital actions) is 

C(S) = e’2~(“-;*i~) _ 1 Jb8+2r G&d@ (t other oscs) 
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‘+** k.,y(B’)~e-i*=,y,‘yB’f=,ll de’ + . . 

I shall focus on the betatron modes for now. Here k is the quadrupole focusing 
strength, and f=,,, is a geometrical factor whose value is proportional to the dot 

product L3&.&. The spin integrals for C are typically dominated by the quadrupoles, 
hence only they have been retained above. The above integral is quite similar in form 
to those from orbital dynamics theory for calculating the action-angle variables for 
a ring with sextupoles etc., but with a spin phase factor in place of the sextupole 
strength. Note that C diverges whenever the “resonance denominator” eiz~(“-“*) - 1 
vanishes, i.e. 

v-v,! = 0,%1,%?,&3 ,... 

Resonances also arise when the complex conjugates diverge, i.e. 

v+v~=O,11,12,~3 ,... 

(5) 

(6) 

2.2 Test: harmonics 

The following prediction does not originate with me, but has long been known by 
workers in the field. It can be found, for example, in the “spin-matching” results 
of Chao and Yokoya 191. In an ideal planar ring, & is horizontal, whereas (3, in 
a quadrupole, is vertical(horizonta1) f or a horizontal(vertica1) betatron oscillation. 
Hence, for horizontal betatron oscillations, Z~.&, = 0 and so f2 = 0 in an ideal ring, 
but for vertical betatron resonances, w’;.&, f 0 and so f, f 0 in an ideal ring. Hence, 
for vertical betatron resonances, the integrand is determined by the ideal lattice, and 
not by the imperfections. Hence, if the integrand k&T? has a superperiodicity, say 2 
as in SPEAR, then all odd harmonics of the vertical betatron resonances will vanish, 
and we should see only 

v rt vy = 0, &2,14, f6,. . . (7) 

This will not happen exactly, because imperfections and the nonlinear tunespreads 
will still yield “forbidden resonances,” but they will be much narrower than the 
“allowed resonances.” This explains why the odd harmonic v = 3 + vy at 3.605 
GeV in SPEAR is so narrow. One can test this claim by measuring the resonances 
Y = uu i 1,2,3,4,. ., not necessarily in SPEAR, but in any planar ring with a su- 
perperiodicity greater than one. Note that the above argument does not apply to 
horizontal betatron resonances because f= = 0 in a planar ring, and so the integrand 
is zero in an ideal ring, and is thus proportional to the imperfections (which have no 
superperiodicity) in a real ring. Therefore one does not get “forbidden” horizontal 
betat,ron resonances, e.g. the resonance v = 3 $ v. at 3.65 GeV in SPEAR is not 
suppressed by virtue of being an odd harmonic. 
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2.3 Tune modulation 

One of the big difficulties in polarization calculations is that in an ideal planar ring 
all the resonances vanish. The resonance widths are therefore proportional to the 
imperfections in the ring. (In the case of vertical betatron resonances the spin in- 
tegral is nonzero in a perfect planar ring but the vertical emittance is zero. The 
resonance width is proportional to the spin integral multiplied by the emittance, and 
is therefore proportional to the imperfections.) This makes predictions of absolute 
resonance widths difficult. However, the ratios of resonance widths are in many cases 
independenl of the imperfections, and can be predicted absolutely. The simplest is 
to consider synchrotron sideband resonances of the first order betatron resonances 
Yi”l,y=o,il ,... 

Defining a = (g - 2)/2, note that synchrotron oscillations lead to a modulation of 
the spin tune because for a planar ring v = ay, hence 

6-r 
v = ay = a-y0 1+ - = 

( 1 Y 
w(l t J21,cos+*) 

Therefore 

Using the identity 

((0) t 1 kfi,-i!bei[d’iW\/iii”;’ Sintiz] ,#’ + 
(9) 

,irdnII = c eimtiJm(r) , 

m 

this becomes a sum of resonances 

dil’ + . 

(10) 

and this has resonances whenever ~0 = int,eger+v s,y t mu,, which are the synchrotron 
sidebands. The d&ailed expressions for C and ~r(8;L/8y)iZ are given in Ref. [7]. If 
xc write 

M~g’i = Fc&l~~~‘),,t mder 7 (12) 

we can express the contributions of the synchrotron oscillations by an “enhancement 
factor” F, 

w p = mg-m (6 t ;LG,, = mgm e-“[ (l + ~lml)h4i(l) + ~4~l+~!~)] cb +cv 
2 

j2 I 

de*e 6 = v - vfi7.t order Te80nlinCe, 
i13) 

the J’s are damping partition numbers, the I’s are 
modified Bessel functions, and 

vo’ CT.’ 

@=y:. 
(14) 

For isolated resonances, the resonance width is proportional to M’kjz. 
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2.4 Test: ratios of widths 

Note t,hat the ratio of the resonance widths is deterministic, because the imperfections 
are the same for all the resonances. There was not enough data in the SPEAR 
measurements to verify this quantitatively, but several tests are possible: 

1. The ratios should be independent of the imperfections. This can be tested by 
exciting closed orbit bumps. As with all statements from perturbation theory, 
there will be corrections, but the principal contribution will be independent of 
imperfections. 

2. The +mv. and -VW, resonances should have equal width. Again there will be 
corrections because the energy spreads are not equal since the energies of the 
resonances are not equal, but the asymmetry should be small. 

3. The absolute value of the ratio of the resonance widths, to that of the parent 
first order resonance, is calculable, so that in test 1 above the ratios should not 
only be independent of the imperfections, but the absolute value can also be 
checked. 

2.5 Test: chromaticity 

The synchrotron oscillations also modulate the betatron tune via the chromaticity, 
viz. 

67 
%,y + ~*o,yo + rz,gy = vzo,,o t Lfi CO6 0, (15) 

and so the synchrotron sidebands in ( above are actually given by 

((0) --) j k~,-i*ei”oe’ei(~~-t)\/if;Y;‘Sin~~ do’ + _ 
(1’3) 

Note therefore that if v. = 5, the tune modulation will vanish and there will be A’0 
SIDEBAh’DS, regardless of the imperfections OP the value of the energy spread. 

This is a very powerful test. One can change the energy spread using resonances at 
different energies, and the imperfections by closed orbit bumps, and this should not 
excite the sidebands. Of course the parent first order resonance will not vanish. As 
always, there will be corrections, because of other terms in the perturbation expansion 
for fi, but they should be much narrower, so “no sidebands” actually means “very 
much narrower sidebands.” 

In SPEAR the spin tune is about 7 - 9, and in CESR it is about 12 - 14. In 
rings like HERA or LEP the spin tune will be about 70 - 100, and this test may 
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thus be impractical. Note that this t,est will only work for resonances of the form 
Y--Y ‘,Y = . ., because for the others v + v=,~ = . . . the condition for no sidebands 
is ~0 + t = 0, which requires a negative chromaticity, which would cause an unstable 
beam. As the chromaticity increases the sidebands of such resonances should grow 
wide?. One can test this too. For clearly discerni& resonances, the resonance widths 
are still given by the enhancement factor Eq. (13), but with the modifications 

2 2 
Width 0: U’,,, a + (Va-‘) 6e 

vf 
(v - “.,s = zttmv, t integer) 

2 2 
D: M.:, a ---) (vo + 0 or 

4 
(v t “.,a, = ztmv. t integer) (17) 

So for a given resonance one can step the chromaticity and measure the dependence 
of sideband width on chromaticity, even for resonances of the form v + v=,~ = . . . . 

N.B. In Ref. [7], the ratios of the widths of the resonances v = 3 + V, and 
Y = 3 t V* - v,, v = 3+v, -2~~ were fitted without taking the horizontal chromaticity 
into account, but a satisfactory fit was nevertheless obtained. This is because & z 0.3 
and v. z 8.28 [lo] so that the chromaticity made a negligible contribution. 

2.6 Cancellation of first order resonances 

In orbital dynamics, one eliminates resonances by cancelling out the driving term of 
that resonance. This involves making certain integrals around the ring circumference 
vanish. Something similar exists in polarization theory, and the procedure is called 
“spin matching” [9]. The simplest example is to adjust the machine superperiodicity 
so tha,t various harmonics vanish. I mentioned this above, but I also have in mind 
something slight,ly different. Note that the first order solution for ( involved a sum 
over the various oscillations. Therefore one adds the integrals befom averaging over 
the distribut.ion of amplitudes and phases of the oscillations. One expects t,hat the 
average will kill any correlation bet,ween integrals pertaining to different modes, e.g. 
horizontal and vertical oscillations. 

Now it has been shown, e.g. in Ref [ll], that for first order resonances, the relevant 
integrals do not depend on the actions and angles, and so if they cancel each other, 
they do so throughout the whole bean. This sounds counter-intuitive, and indeed it is. 
However, the resonances are act,ually determined by the derivative ~(&/+y), which I 
have ignored up to now, and in r(&~/+y) the first order integrals are independent of 
the actions and angles. It is not necessary to worry about the subtleties here. Clearly, 
however, the integrals cannot cancel if the tunes are different - they would diverge 
at different tunes. However, if one could make the tunes nearly equal, then one could 
adjust the machine so as to make the horizontal and vertical betatmn resonances 
nearly cancel each other. 
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Since the resonances are determined by imperfections, this will require some em- 
pirical closed orbit adjustment. For example one could adjust the machine to make 
each resonance v = v, + . . and v = vu + . . . vanish - this has been done successfully 
at PETRA - then deliberately introduce a controlled closed orbit bump to excite 
each resonance by a known magnitude and phase. This would prove that the reso- 
nance integrals really do add before averaging, even if they belong to different orbital 
modes - one naively thinks that a horizontal and vertical betatron integral should 
be “incoherent.” 

3 Summary 

Let us summarize the proposed tests of the theoretical predictions: 

1. A scan of the polarization in two energy ranges, so that one can verify the 
suppression of forbidden harmonics, in a ring with superperiodidty > 1. 

2. Ratios of resonance widths, especially synchrotron sidebands (probably the sim- 
plest higher order resonances to measure), and independence of these widths on 
imperfections. 

3. Elimination of synchrotron sidebands by adjustment of chromaticity. Also vari- 
ation of widths with respect to chromaticity. 

4. Elimination of horizontal and vertical betatron resonances by playing them off 
against each other. Requires empirical adjustment of imperfections. 
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Appendix: Theoretical interpretation of the SPEAR polar- 
ization data 

This appendix contains a copy of my overall theoretical fit to the SPEAR data [4], 
followed by a transcript of a letter written to the SLAGWisconsin Collaboration 
which took the data published in Ref. [4]. The phrase “your paper” below always 
means Ref. (41. The letter contains a a copy of the experimental data, then my 
theoretical fits, and then an explanation of the above. 
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4 Specific points 

I would like to draw your attention to specific features in the experimental and the- 
oretical data, which I think are significant. I invite your opinions on these and other 
features. I also enclose a summary of the theory and computer program at the end. 

4.1 Notation 

The notation employed follows that in your paper. The symbols v., vn and v, denote 
the tunes of the particle orbits, for the horizontal betatron, vertical betatron and lon- 
gitudinal (synchrotron) oscillations, respectively. The tune is the orbital oscillation 
frequency divided by the revolution (Larmor) frequency. The quantity Y is the “spin 
tune,” i.e. the tune of the spin precession in the storage ring. Resonances occur be- 
cause of coupling between the spin and orbital precessions/oscillations, and generally 
lead to strong depolarization. A resonance occurs whenever the condition 

” = mo t ?nlU, + m2v, + m3v. (18) 

is satisfied. Here mo, ml, etc. are integers, including zero. A low order resonance 
has small absolute values for ml, ms and ms, e.g. v = 3 + v,, while higher order 
resonances have larger values, e.g. v = 3 + v, i v. or Y = v, + vv - 2. You identified 
various low order resonances in your published data, up to the third order resonances 
v = 3 + v, zt 2~. at approximately 3.61 and 3.69 GeV, respectively. 

4.2 Orders of calculation 

Calculating the polarization to high orders using SMILE is a fairly time-consuming 
business [and for machines like HERA and LEP a heavily disk-space-consuming busi- 
ness too), because the number of integrals to be calculated increases rapidly with 
the order of perturbation theory. The polarization was calculated up to third order 
resonances in any combination of orbital modes (horizontal and/or vertical betatron, 
etc.), in steps of A(ar) = 0.001, ix. AE = 0.440652 MeV, over the whole energy 
range. It was calculated to higher orders in selected modes in various smaller energy 
intervals, when investigating specific higher order resonances, and these “subgraphs” 
were spliced into the “main” graph. This necessarily implies a choice of the reso- 
nances one believes to be important: the theory curves are not a general scan for all 
possible resonances up to some ridiculous order. 1 shall return to this point below. 
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S.R. Mane, 
Fermilab, P.O. Box 500, 
Batavia, IL 60510. 
MANE’QFNAL 

September 7, 1988 

The SLAC-Wisconsin Collaboration, 
Drs. J.R. Johnson, R. Prepost, D.E. Wiser, 
J.J. Murray, R.F. Schwitters, C.K. Sinclair, 
Dear Sirs, 

Some years ago you measured the positron beam polarization in SPEAR using a laser Comp- 
ton backscattering technique, and published, amongst other results, a graph of the polariza- 
tion vs. accelerator energy. You found several depolarizing resonances, and published a fit, 
by Dr. A. Chao, to the first order ones. Due to lack of a suitable theory, no fit was published 
to the higher order resonances, and you drew a guide to the eye through your data. 

In 1986 I developed a formalism to calculate these higher order resonances, and coded it into 
a computer program called SMILE. I did not publish a fit to the data at that time due to 
the lack of a copy of the SPEAR magnet lattice. I have recently obtained a copy, and have 
applied SMILE to it. I believe, on the basis of my calculations, that you actually found many 
more resonances than you claimed in your paper. Some are very narrow, shows that your 
measurements were very precise. I enclose a copy of my results, and invite your comments. 
The enclosed material contains (i) a copy of your graph, (ii) my theoretical fits, and (iii) a 
commentary on the above. 

I hope to present some of these results at the 8th International Symposium on High-Energy 
Spin Physics, to take place soon in Minneapolis. Perhaps I shall meet some of you there. I 
regret that I could not contact you sooner, but I only recently obtained a copy of the SPEAR 
lattice, and then had to perform various checks before I could circulate these results. 

I would be grateful if you would contact me directly with your questions and comments, as 
I could then answer them more fully, and it would avoid any misunderstandings as to what 
exactly I claim about your work. 

Thanking you in advance. 
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4.3 Values of the tunes 

It is st,ated in your paper that the machine tunes varied slightly between the various 
runs of data taking, and that this was compensated for, when publishing the data, by 
using the relationship between the spin tune and the beam energy (v = $g - 2)/2) to 
position the resonances appropriately. However, if, say, the horizontal betatron tune 
was a&e average and the vertical bet&on tune was belovr average in a particular 
scan, there is no nay to compensate for both tunes simultaneously. 

For example, in the magnified view above of the polarization in the region E = 
3.68 - 3.70 GeV, there is no way to fit the v, and vv resonances simultaneously to the 
data. It can be verified that there is no single set of three numbers (tunes) that will 
simultaneously fit the published positions of all the resonances exactly - some of the 
resonances arc 1 or 2 mm off on the scale of the graph in your SLAC publication [12]. 
Since some of the resonances are about 4 or 5 mm aide, this variation is small but 
not,iceable if one attempts to fit the positions of the resonances theoretically, using the 
same values for v,, vv and v. throughout the whole energy range of the experiment. 
Therefore, the following values were used to fit the positions of the resonances: 

v, = 5.281, I+ = 5.176, v, = 0.0417) 3.52 cc E < 3.60 GeV 

v* = 5.282, vu = 5.182, v, = 0.0446, 3.60 < E < 3.76 GeV. (19) 

This does not, of course, depend on my theory, or anyone else’s. The numbers are 
chosen by examining the experimental graph. Notice that the theory curves join 
smoothly; the above variation of the tunes does not visibly affect the polarizat,ion. 
The relevant quantities arc the resonance widths, not positions, and they are not 
significantly affected by the above changes in the tunes. 

4.4 Imperfections 

In a perfect machine all the resona,nces vanish. Hence imperfections were generated 
by applying vertical kicks to the orbit around the ring, using random numbers with 
a Gaussian distribution with zero mean. A simple orbit correction technique was 
applied, which was to Fourier analyze the closed orbit, 

Y,.,.(B) = c $k eikB 
k 

(20) 

and to suppress the two harmonics closest to the vertical betatron tune. Since 
vy z 5.18, the real and imaginary parts of &, and $s were suppressed. Such correc- 
tion is necessary in a simulation because the spectrum of the harmonics & changes 
greatly after correction - the harmonics before correction tend to be peaked near 
the betatron tune, whereas after correction the spectrum is white. This was observed 
to be the case in the above fits. 
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4.5 Resonance v = 3 + v. at E=3.85 GeV 

As mentioned above, the theory curves depend on random numbers (to determine the 
absolute resonance widths), so some criterion must be used to determine the standard 
deviation of the random numbers which generate the imperfections. This was done 
by fitting the theory curve to the resonance v = 3 t v, at 3.65 GeV, so this cannot 
be considered as a theoretical prediction. 

4.6 Resonances v = 3 + v, i v. at E=3.63/3.67 GeV 

Although the absolute resonance widths depend on the imperfections, it can be shown 
that the ratios of the widths of certain resonances do not, and can thus be calculated 
deterministically (see the figures below). The resonance width can be defined as 
the interval in which P/PO < 50%. In particular, the ratios of the widths of the 
synchrotron sideband resonances Y = rno + v.,~ i msv#: rn3 = 1,2,3,. . ., to that of the 
parent resonance v = rno + v=,v are independent of the imperfections. It can be seen 
that although the three theory curves are generated using different random number 
seeds, the ratio of the width of the resonance v = 3 + v, - v. at, 3.63 GeV to that of 
Y = 3 + v, is the same (about 0.2), and in all cases the second order resonance fits the 
experimental data. This was achieved without further adjustment of the parameters 
once the orbital tunes and the standard deviation of the random numbers had been 
fized (131. For the resonance v = 3 + v2 IV. at 3.67 GeV, there is not enough data to 
make any quantitative statement. My calculations predict it should have the same 
width as its “twin” v = 3 t v. - v. at 3.63 GeV, to leading order in perturbation 
theory, with small less singular corrections. 

4.7 Resonance v = 3 + vv at E=3.1305 GeV 

4.7.1 Nonlinear tune spread 

The width of this resonance was claimed in your paper to be determined by the 
tune spread of the vertical betatron oscillations, caused by nonlinear dynamics in the 
machine [14]. The fit by Chao published in your paper is narrower than the observed 
width. My own calculations confirm this conclusion, but I was able to obtain a 
reasonable fit in the following way. 

My computer algorithm was formulated using only linear dynamics: one of the 
points I proved [3] is that linear dynamics can generate higher order resonances by 
itself. However, the algorithm can be modified to include nonlinear dynamics using 
the following approxima,tion: we assume that the principal effect of the nonlinearities 
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is to create a tune spread (of the vertical betatron oscillations), but without signifi- 
cantly affecting the amplitudes of the betatron oscillations. Therefore we can express 
a “nonlinear betatron oscillation” in the form 

Y(q = Qy cos(+B + do) (linear) 

vy --+ v&, + I+; 

Y --+ Qy COS((Q + +;,s + do) (nonlinear) (21) 

Here ay is the amplitude, and for sextupole-induced tune spreads it is known that 
Au, 0; a:. Since the solutions for iL and y(%/ar) are expressed as power series in aY, 
the above nonlinear oscillation is expanded in powers of au, and added to the other 
terms in the series. I repeat that this is an approximate procedure. 

In one of your graphs, you published the value of the r.m.s. vertical betatron tune 
spread, and I used this to fit uh above. Then I ran the program with the approximate 
nonlinear betatron tune and obtained the above theory curves. Note that I do not 
claim that the resonance width is equal to the vertical betatron tune spread: it 
is merely determined by the existence of the tune spread. Without tune spread 
(linear dynamics only) the theoretical width is much narrower than the observed 
value, consistent with Chao’s finding. 

A magnified view of this resonance was given above. I shall discuss it in more 
detail below. 

By the way, I retained the nonlinear tune spread throughout the whole energy 
scan. It also helps t,o determine the widths of the resonances v = I+, - v, (3.585 
GeV), Y = vY I v. (3.625 GeV), and Y = 2v, - 2 (3.686 GeV). Note that they are 
all narrower than the vertical betatron tune spread. There is no significant effect for 
other resonances. 

4.7.2 Nonlinear resonances 

In my nomencla,ture, the resonance Y = 3 + Q at 3.605 GeV is an example of a true 
“nonlinear resonance.” Resonances such as Y = 3 + Y. l v. are “higher order,” but 
linear, resonances, because they can be explained using only linear dynamics. I use 
the term nonlinear resonance only for cases where the resonance width is determined 
by nonlinear dynamics. Many other authors refer to the first order resonances as 
linear resonances, and to all higher order resonances as nonlinear resonances. From 
above, you can see that I refer to the resonance v = 3 t vu as nonlinear even though 
it is of first, order. 
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4.7.3 Magnified view 

A magnified view of the energy range 3.59 - 3.61 GeV, which contains the resonance 
Y = 3 + vv, is enclosed. Notice that the observed width appears to be larger than the 
theory fit. It suggests that the nonlinearities have a bigger effect than is accounted 
for by using the approximation I made above. We shall see another example below, 
where the same thing happens. A curious feature of nonlinear resonances is that 
they seem to have a different characteristic shape from linear resonances: they are U 
shaped, whereas the linear ones are V shaped, i.e. the former have steeper walls and 
flatter valleys. I shall discuss the other very narrow resonances in the graph later. 

4.8 Resonances v = 3 + us + 2~. at E=3.0l/S.1388 GeV 

4.8.1 Asymmetry of widths 

These are two narrow, higher order resonances. Their widths are also determined 
without further adjustment of the theory after fitting the first order resonance Y = 3t 
v,. According to theory, their widths should be equal (toleading order in perturbation 
theory - I expect any corrections to this to be small 173). The experimental curve 
indicates a large difference in the resonance widths - the resonance at 3.688 GeV 
is much wider than the one at 3.61 GeV. My explanation is as follows: according 
to my calculations, the wider resonance at 3.688 GeV is actually made up of ttuo 
nearly overlapping resonances, viz. Y = 3 + vl + 2~. as indicated in the experiment, 
and v = Zv, - 2 at, a slightly lower energy. The energies are approximately 3.69 
and 3.686 GeV, respectively. I think there is some experimental evidence to support 
this conclusion because there are points with high polarization (P/PO > 80%) in the 
middle of the “resonance,” suggesting that there are two narrow, nearly overlapping, 
resonances there. 

4.8.2 Magniiied view, evidence for additional resonances 

A magnified view of the resonance at 3.688 GeV is enclosed. On this scale, one can 
see that some of the theory resonances are displaced relative to the data. If the theory 
graph is shifted relative to the data, a much better fit is obtained for those resonances 
involving only v,. This is in keeping with the spirit of adjusting the energy positions 
without changing the resonance widths. Looking at the data on this scale, I think 
there really are two resonances there. 

Note also that, on this magnified scale, we can discern evidence for another narrow 
resonance, which seems to fit the assignment v = -2 i v, + vY - 2v,. Being a fourth 
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order resonance, it is beyond the maximum order of the general theory scan, which 
only calculates up to third order resonances. Hence I ran a fine scan to search for 
fourth order resonances, and there it was, as shown in the top right hand subgraph! 

Note, as I pointed out above, that there is no way to fit the experimental loca- 
tions of all the resonances using fixed values for the tunes. However, a theory scan 
necessarily requires fixed tunes. Consequently, based on the theoretical calculations, 
I const,ructed a hand-drawn “artist’s conception” of the experimental resonance spec- 
trum. There is enough data to justify at least three of the five resonances in this tiny 
energy interval - the experiment really was able to see narrow resonances. 

4.8.3 Nonlinear resonance 

The v = 2u, - 2 resonance is nonlinear. Linear dynamics alone predicts a much 
narrower width. Recall that I said above that I retained the approximate nonlinear 
dynamics throughout the calculations, and I also said that, I would show another 
example of a nonlinear resonance. Once again, the observed width seems to exceed 
the theoretical fit, which suggests that the nonlinearities have a bigger effect than 
my approximate method accounts for. The resonances Y = 3 + vz t 2v, and Y = 
-2 + v, + vv - 2~. on the other hand, are linear, and seem to be fine. 

4.9 Narrow higher order resonances 

The experiment,al guide to the eye only identified the low order resonances visible 
in the data. However, there are several isolated points in the data at which P/PO 
is distinctly lower than the background data, but a smooth curve is drawn through 
such regions. We have seen some examples already. Such points are marked with an 
arrolv in the figure below. I think that these points of reduced polarization (usually 
60 - 70%) are evidences of real physics, and should not be ignored. I think that 
the experiment found several narrow resonances, but because they are so narrow, 
the centers of the resonances were not hit, and so the polarizat.ion did not drop to 
zero. In particular, I interpret the point at 3.598 GeV, where P/PO = 88% while the 
other points are approximately loo%, as evidence that you found t,he very narrow 
resonance v = 8 + 4~. - a fourth order resonance. It can be seen in the magnified 
view of the region E = 3.59 - 3.61 GeV above. Curiously, the first three members 
of this family, viz. v = 8 t {v.,~v,,~Y,}, at 3.543 GeV, 3.562 GeV and 3.58 GeV 
respectively, cannot be positively identified in the experiment, even though they are 
all wider, due to the scarcity of experimental data below 3.59 GeV. The experimental 
guide to the eye does not try to identify them either, for the same reason. Too bad. 

I think the other arrowed points can also be explained this way. Recall that the 
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experimental values of v,, vW and v. were not exactly constant throughout the energy 
scan - it is a compilation of many scans. However, the tunes were constant in the 
theory fits, except as indicated above, and I think this explains why the theoretical 
locations of these narrow resonances do not exactly coincide with some of the points. 
There are also some points at which the theoretical fits do not indicate a narrow 
resonance, although the data do. These are marked with a question mark. This may 
be because the perturbation expansion was not carried far enough - the resonances 
only appear at a higher order than that calculated. Recall that 1 stated above that 
the theory curves are not a brute force scan of all possible resonances to some very 
high order. 

Note also that, according to theory, the polarization drops to zero at the exact 
center of a resonance (actually, perturbation theory is then not valid), so the theory 
curves should, in principle, drop to zero every time a resonance is encountered, but for 
a narrow resonance this requires a very fine scan, and so the theory curves generall) 
do not drop to zero. It is an indication of narrowness, in its own way. 

4.10 The region below 3.59 GeV 

The data are sparse in this region, and no attempt is made to draw a guide to the eye 
below 3.56 GeV. Only one resonance is identified in this region, viz. v = v, - vv + 8 
at 3.57 GeV. The theoretical width of this resonance is narrower than that indicated 
experimentally, but I think there is no contradiction, because the data are clearly 
consistent with a narrower resonance. The resonance v = 8 + 3v, at 3.58 GeV seems 
to slot in between the data perfectly, and is therefore not observed, even though it 
is as wide as many other resonances which are observed. Again I think there is no 
contradiction with experiment. 

4.11 The region from 3.64 - 3.67 GeV 

Kione of the t,heoretical curves really fit the data in this region, even though I stated 
above that the resonance v = 3 t v, was used to calibrate the magnitudes of the 
random numbers. The “calibration” was an approximate one, to get the general 
order of magnitude correct - basically, to get the heights of the shoulders on either 
side to approximately fit the data. I have no real explanation of the data here. 
Unlike the other clearly discernible resonances, where the data form a distinct U or 
V sha,pe, the data here do not. The experimental guide to the eye also ignores any 
“fine structure” in the data in this energy range. It is curious that, even close to the 
center of the resonance v = 3 + v, at 3.65 GeV, there are data with P/PO z 30% at 
the same energies where P/P0 2 0. The theory just predicts a smooth curve. 
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5 Conclusions 

Your experiment provides a clean determination of many spin resonances, including 
some very narrow ones, to an amazingly high order. There is a rich spectrum of 
resonances visible in your data. I would not be surprised if you could find fifth 
order resonances, with more detailed scans. Speaking as a theorist, the data indicate 
that SPEAR is really an excellent machine to test theoretical predictions because the 
resonances are well-separated, thus enabling a precise determination of the resonance 
widths, and resonances of high order are visible, as well as resonances whose widths 
are clearly determined by nonlinear dynamics. It is not high-energy physics per se, but 
it is an excellent display of Hamiltonian dynamics coupled with statistical mechanics. 

A summary of the theory and computer program follows. Thank you. 

6 Summary of theory and computer program 

The polarization is calculated using the Derbenev-Kondratenko formula [2]. You may 
recall that the formula is 

p=s ((p[-J8.[ti--r~]) 
5a 

(22) 

( [ j&3 1 - +q2 + E $$ 2 I II) ’ 
Here 6 i.s the particle velocit,y, y is the particle energy in units of rest mass energy, 
b z v’ x ii/(Cx <I, v? is the spin quantization axis and p is the radius of curvature of the 
particle trajectory. The angular brackets denote an average over the distribution of 
particle orbits and the ring azimuth. I evaluate this formula using a suitably defined 
perturbation expansion to calculate the spin-orbit coupling, hence the vectors +I and 
y(c%j+). The details are given in Ref. 131. It is a fairly long paper (14 pages), 
and I do not, think it is essential for you to digest its contents. A description of the 
algorithm is given below, and I hope it is a.dequate. 

The solutions for 6 and $&/c?y), in terms of the accelerator parameters (such as 
the beta functions, beam energy, quadrupole focusing strengths, etc.) are expressed 
as series expansions in powers of the amplitudes of the orbital oscillations, i.e., the 
N”’ term contains N powers of betatron oscillations, and yields an expression for the 
N*h order resonances (plus corrections to the lower order resonances). . 

[Note added in presenl report: The reader should be aware that higher order spin 
integrals can modify the widths of lower order resonances. This has been observed 
in results from SMILE. Perhaps the simplest nay to see this is to calculate +I tzactly 
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for a simple, but nontrivial, model. This has been done in Ref. 1151, for a planar 
ring wit,h only one resonance. The reader can then compare the exact solution with, 
say, a first order perturbation theory approximation, to see the corrections induced 
by higher order terms in the perturbaton series.] 

. . . Thus the first order term is linear in the betatron oscillations, and coincides 
with Chao’s results - at the first order of the perturbation expansion, it reproduces 
Chao’s results for the first order resonances [ll] (y our paper contains a graph where 
those results were used to fit some of the resonances you found). However, the 
perturbation expansion also goes to higher orders, and yields expressions for higher 
order spin resonances. The technical details of how I calculate these terms (they 
are integrals around the storage ring circumference) are boring, and not essential, I 
think. Explicit expressions for these higher order integrals are complicated, unless 
one makes drastic simplifying approximations, and are also not essential. 

The computer program is called SMILE, and can, in principle, calculate to arbi- 
trary orders, given enough time and disk space. It is also possible to instruct the 
program to calculate to a high order in only the longitudinal (synchrotron) oscil- 
lations, say, leaving the transverse betatron oscillations alone, if it is felt that the 
longitudinal oscillations are more important: the user specifies the maximum order 
of calculation for each mode of oscillation. Provision is made to include the effects 
of machine imperfections. I have obtained a copy of the SPEAR magnet lattice, and 
run SMILE with it, with different random number seeds to generate different sets 
of imperfections. It is obviously not exactly the same magnet lattice as the one you 
worked with, but not too far different, I hope. 
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